

U.S. DEPARTMENT OF COMMERCE Frederick B. Dent, Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Robert M. White, Administrator ENVIRONMENTAL RESEARCH LABORATORIES Wilmot N. Hess, Director

NOAA TECHNICAL REPORT ERL 259-POL 16

RP-6-0C-71 Data Report: Oceanographic Conditions Off the Washington Coast October- November 1971

T.V. RYAN N.P. LAIRD G.A. CANNON

BOULDER, COLO. March 1973

For sale by the Superintendent of Documents, U.S. Government Printing Office, Woshington, D.C. 20402

NOTICE

The NOAA Environmental Research Laboratories does not approve, recommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to the NOAA Environmental Research Laboratories, or to this publication furnished by the NOAA Environmental Research Laboratories, in any advertising or sales promotion which would indicate or imply that the NOAA Environmental Research Laboratories approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NOAA Environmental Research Laboratories publication.

TABLE OF CONTENTS

1.	INTROD	UCTION	1
2.	PLANS	AND OPERATIONS	3
	2.1	Environmental Considerations	3
	2.2	Survey Design	4
	2.3	Field Operations	12
3.	THE DA	ТА	15
	3.1	Current Data	15
		3.1.1 Current Data from Moored Instruments 3.1.2 Current Data from Parachute Drogues	15 19
	3.2	STD Station Data	21
		 3.2.1 STD Data Format 3.2.2 STD Deployment 3.2.3 STD Calibration 3.2.4 STD Station Inventory 3.2.5 Thermohaline Properties in the Study Area October - November 1971 	21 22 23 24 24
		3.2.6 STD Time Series	30
	3.3	Thermistor Temperature Data from Site B o	32
	3.4	Tidal Data from Neah Bay Standard Tide Gage	32
	3.5	Meterological Data	32
	3.6	Bathymetry near Site B _O	33
4.	ACKNOW	LEDGEMENTS	36
5.	REFERE	NCES	37
APP	ENDIX		39

LIST OF FIGURES

Figure		Page
1	a) Station Location Chartlet RCSS #1	6
	b) Station Location Chartlet RCSS #2	7
2	Diagram of Site A Instrument Array	8
3	Diagram of Site B Instrument Array	9
4	Bathymetry in Vicinity of Site B	10
5	Bathykymograph Record from Instrument Array A	17
6	STD Station Data Format (Typical)	22
7	Diagram of STD Station Latitude (Vicinity of Site A)	31
8	Wind Velocity Vectors Recorded at Umatilla light ship and OSS - 1, 21 - 23 October 1971	36

LIST OF TABLES

Table		Page
1	STD Station Inventory by Station Number	25
2	STD Station Inventory by Location	27
3	Wind Speed and Direction from Umatilla Light Ship October - November 1971	34
4	Wind Speed and Direction from Ship OCEANOGRAPHER October - November 1971	35
A1	Bottom Drifter Release Information	43

LIST OF PLATES (Plates in pocket of backcover)

Plate

	_						-	
1	Droque	Traie	ctories	at	Site		and	RETA
+	DIUGUC	110,10		uu	0100	7161101	unu	

- 2 Surface Temperature and Salinities. October and November 1971
- 3 Temperature Sections off the Washington, Vancouver Island Coast. October and November 1971
- 4 Salinity Sections off the Washington, Vancouver Island Coast. October and November 1971
- 5 Temperature Time Series at Site B_o with Tidal Heights at Neah Bay 14 October - 15 November 1971

•

OCEANOGRAPHIC CONDITIONS OFF THE WASHINGTON COAST OCTOBER - NOVEMBER 1971

T. V. Ryan, N. P. Laird, and G. A. Cannon

1. INTRODUCTION

Wise management of Washington's coastal zone and major estuary requires an understanding of the oceanographic processes which affect the marine environment. In October-November 1971 the Pacific Oceanographic Laboratory (POL), with the support of the NOAA Ship OCEANOGRAPHER, conducted a field investigation for the acquisition of preliminary data basic to a study of the dynamics of Puget Sound and Washington coastal waters.

The common interest in coastal zone processes, shared by POL and the Department of Oceanography of the University of Washington, prompted a cooperative effort which made possible a substantially stronger field program than POL could have conducted alone. The University loaned POL current meters and associated equipment. We in turn, installed and recovered two of their moored instrument systems and launched a large number of their bottom current drogues.

This report of an oceanographic survey off the Washington coast by the Pacific Oceanographic Laboratories, October-November 1971, presents a discussion of the environmental factors which were considered in the planning of the survey, an account of how the cruise actually progressed, and an inventory of the data collected. Selected data on the offshore thermohaline conditions, illustrating changes occurring over a period of a few weeks are presented in graphical form. Data from the moored current meters will be presented in a separate report. Operational aspects of the field work were supported by NOAA's National Ocean Survey. The NOAA Ship OCEANOGRAPHER OSS-1, provided and operated all data collection facilities, other than the U/W-POL moored instrument systems. The Pacific Marine Center prepared the plotting sheets for the HIFIX positioning and manned the HIFIX shore stations during the two periods that precise positioning was essential. The personnel participating in the field work were:

From the OCEANOGRAPHER - OSS - 1

M.J. Tonkel, CAPT NOS

J.P. Randall, CDR NOS

NAME

FUNCTION

Ship Captain; Operational plans.

- Executive Officer; Instrument systems rigging and deployment. Daily operating plans.
- J.P. Vandermeullen, LCDR NOS Field Operations Officer; Daily operational plans, Technical supervision of shipboard personnel.
- W. Ulman, LTjg, NOS Ship computer operations and data W. Viertel, ENS, NOS data plotting.
- Ship's Crew Operation of STD, construction of parachute drogues, salinity analysis, deployment of instrument arrays.

From PACIFIC OCEANOGRAPHIC LABORATORIES:

NAME	FUNCTION
T.V. Ryan	Chief Scientist; Project supervisor.
Dr. G. A. Cannon	Project Scientist; Scientific plans, instrument array design University of Washington project representative.
N.P. Laird	Project Scientist; Plans, Acoustic release systems.
J.P. Stephens	Project Technician; Geodyne current meters, bathykymograph, data processing.

2. PLANS AND OPERATIONS

2.1 Environmental Considerations

A prominent bathymetric feature of Washington's continental shelf is a sinuous, deep (average depth - 300 m) trough or canyon which connects the mouth of the Straits of Juan de Fuca with the Juan de Fuca Canyon. The latter name has been reserved for the sea canyon which starts at the edge of the continental shelf some 55 km southeast of Cape Flattery, and winds its way down the continental slope, almost to the Cascadia Basin (McManus, 1964). Despite its obvious significance in providing a relatively deep passage for waters across the much shallower (100 - 150 m) shelf, this connecting link has no proper name. To facilitate discussion, herein the term "Juan de Fuca Canyon" will be extended to include this connecting "trough" up to its junction with the Straits of Juan de Fuca.

The focal point of the project was on the currents in the Juan de Fuca Canyon and the Canyon's influence on the estuarine and coastal currents. Three major current systems are active in the Canyon and to some extent interact there. The dominent system is the strong current associated with the tidal prism of the great estuary composed of the Straits of Juan de Fuca and Georgia, Puget Sound, and their contiguous waters. A secondary system results from the fresh water added to the estuary from its watershed, and the compensatory current which maintains the salt balance in the estuary. Evidence that this system undergoes large scale fluctuations, probably caused by meteorological factors, had been recently reported by one of the authors (Cannon, 1972). The role of these fluctuations on the flushing characteristics of the estuary are of importance. The third system is the rather vague resultant or weak manifesta-

tions of the California (or Japanese) current, the intermittantly present Davidson current, and local wind stresses. Our objective was to obtain data on each of these three systems.

Local regional weather was a prominent factor in the project plans. In summer, the NE Pacific is dominated by a high pressure system centered near 37° N, 150° W; in winter by a low pressure system centered in the Gulf of Alaska. The cruise was thus situated during the transitional period between the two states when frequent frontal passages sweep from west to east through the area with strong winds, shifting from SW to NW. It was anticipated that several of these reversals would occur during the recording period. On a more immediate basis it was anticipated that heavy weather could curtail or jeopardize the successful rigging, implanting and recovery of the instrument arrays, the tracking of parachute drogues, and STD employment. For these reasons the plans were framed with expectations that time and equipment losses were likely, and that rescheduling, cancellations and alternative options were a certain part of the field work.

The more important data resources used in the cruise planning were the report by Ingraham (1967) of geostrophic currents and water properties of the area just seaward of the present study area and the series of data reports on physical, chemical, and biological properties of the Juan de Fuca Straits and the Washington coast from cruises by University of Washington oceanographers. (University of Washington Department of Oceanography Technical Reports Nos. 119, 134, 159, 180).

2.2 Survey Design

For analysis of the primary system, the tidal currents, 30 day current measurements were planned at Sites A and B (fig. 1) with meters at

the depths shown in figures 2 and 3. The bathymetry of the study area is indicated in figure 4 (figs. 1-4 are in front material). Concurrent tidal height data was anticipated from the existing standard tide guage maintained by the NOS at Neah Bay, which is on the Washington coast immediately south of Site A. Analysis of the secondary current system. (which determines the fresh-salt water budget of the estuary) was dependent on the data from Site A and B_0 current meters, from which the net flow would be extracted by appropriate data processing. A forty hour time series of STD stations across the mouth of the Strait. (fig. 1) and a twenty-four hour time series at a previously occupied University of Washington reference station off Pillar Point, about 44 km east, were planned to provide details of the water structure to be used with the current data from Site A, and to enable us to relate our findings to the historical data from Pillar Point. River discharge, essential to the water exchange study, is routinely collected by the U.S. Geological Survey.

The coastal current regime was to be studied by analysis of the physical properties of the water (geostrophic field and thermohaline gradients), supplemented by direct current measurements from Site B, and from parachute drogues. The thermohaline properties were to be measured throughout the area by three series of STD stations; at the beginning, middle and end of the 40 day cruise. It was anticipated that each series would require about 6 days. These series are called "regional current system studies," abreviated "RCSS." Plans called for stations on lines oriented normal to the coast, with observations extending from the surface to within four meters of the bottom. Stations were spaced along

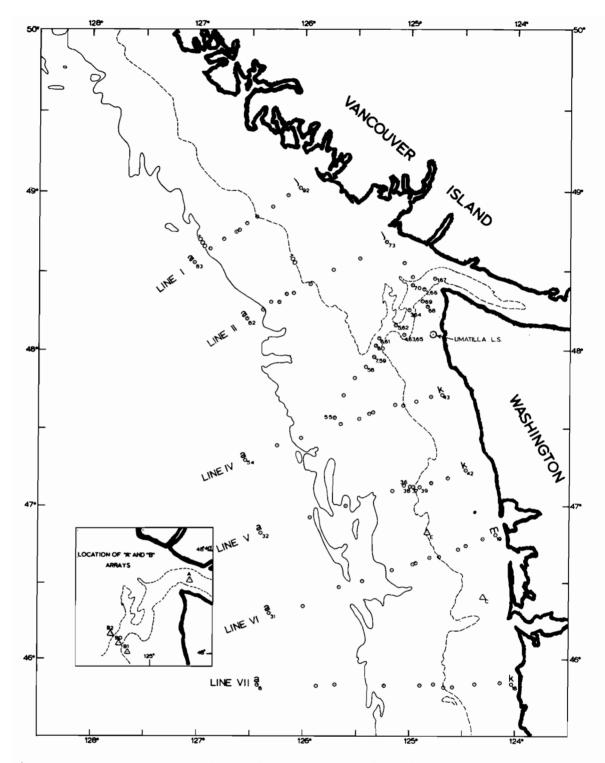


Figure 1a. Station locations for Regional Current System Study 1(RCSS 1) 17-24 October 1971. Stations are identified by serial number and by line and alphabetic designator.

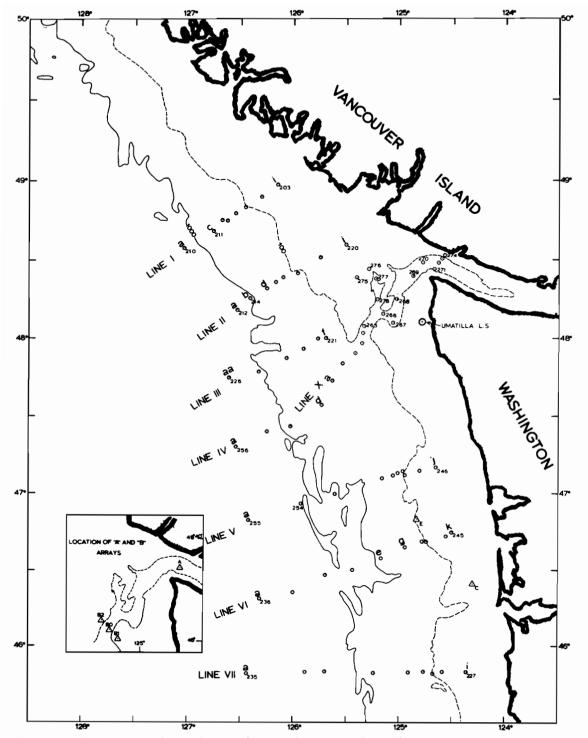


Figure 1b. Station locations for Regional Current System Study 2 (RCSS 2) 12-19 November 1971. Stations are identified by serial number and by line and alphabetic designator.

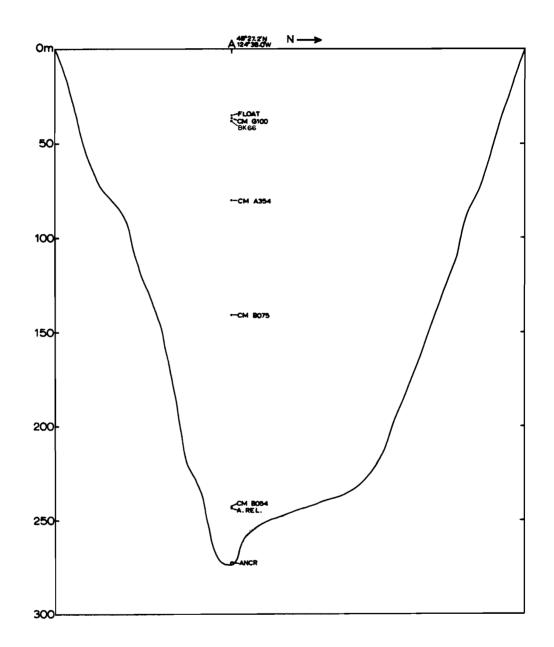


Figure 2. Diagram of Site A instrument array. Symbols: cm = current meter. Letter and numbers following indicate type (G-Geodyne, A-Aanderaa, B-Braincon), and serial number. A. REL = acoustic release. ANCR = anchor. BK = bathykymograph.

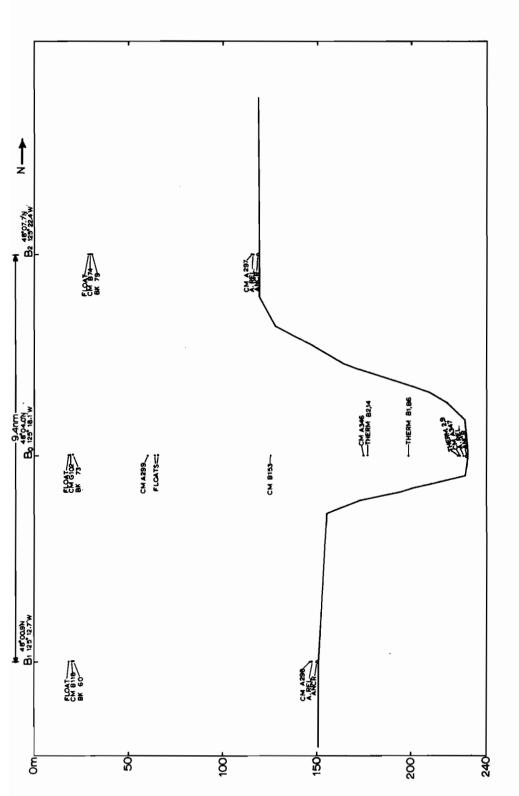


Figure 3. Diagram of Site B instrument arrays. Symbols: cm = current meter. Letter and number following indicate type (G-Geodyne, A-Aanderaa, B-Braincon), and serial number. A.REL = acoustic release. ANCR = anchor. BK = bathykymograph. THERM = thermistors (and serial numbers).

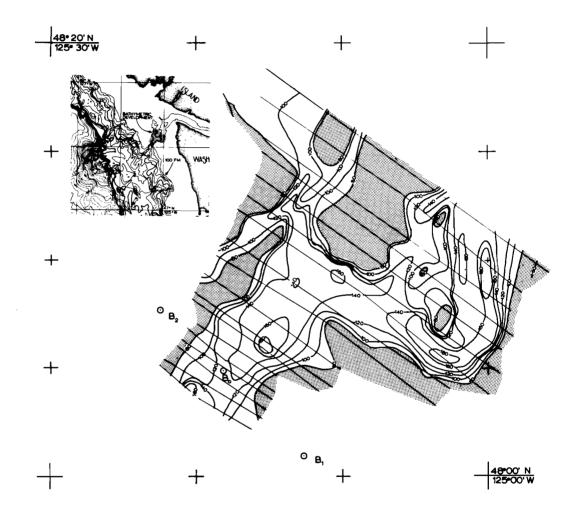


Figure 4. Bathymetry in vicinity of Site B arrays. Contours in fathoms corrected for sound velocity. Shaded areas less than 80 fathoms. Light lines indicate sounding tracks.

the lines so as to reach nominal depth of 20, 30, 50, 70, 100, 200, 400, 600, 800, 1000 and 1300 fathoms. The deeper limit corresponds to the depth of the Cascadia Basin and would require supplemental Nansen bottle casts. Parachute drogue tracking was planned in the vicinity of Site B with drogues set at depths deep in the Canyon, at an intermediate level and in the mixed layer. A second set of drogues was planned as a contingency in the Davidson current, if clear evidence of it were found during the first RCSS, mentioned above. As an alternate option, two lines of Nansen stations extending from the 1000 fm curve to the longitude of Cobb Seamont, were planned for a geostrophic analysis of the offshore currents.

Several auxiliary data collection programs were incorporated in the planning for supportive purposes. Bathymetric reconnaissance surveys were planned at the several moored current meter sites so as to insure placement of the arrays in the axis of the Canyon and to avoid local topographic features which might distort the currents. A closely spaced grid of STD stations was planned at Site B to provide the thermohaline structure in detail for analysis with the current data.

A vertical array of six thermistors with an appropriate recorder, was to be moored at Site B_0 to provide detailed data on the thermal properties of the water concurrent with the 30 day current record. The system was designed to record two independent measurements of temperature at depths of 175, 195, and 235 m at 10 min intervals. The relationship of thermistor depths and current meter depths to the Canyon bathymetry is **shown in figures** 2 and 3.

To supplement the STD observations for the mapping of surface salinity and temperature distribution, it was planned to operate sea surface temper-

ature and salinity recorders continuously while the ship was streaming on RCSS. Meteorological data (barometric pressure, air temperature, wind speed and direction) are recorded by NOS ships routinely each hour while at sea. The Coast Guard personnel at Neah Bay and Umatilla light ship were alerted that their routinely recorded weather data would be required. The National Weather Service barometric pressure summaries, routinely prepared on a daily basis, 'cover' the study area.

2.3 Field Operations

The project was executed in three phases as planned. During the first phase (13-26 October) the current meter arrays were successfully rigged and implanted, utilizing HIFIX and LORAN A position control. A marker buoy was set near Site B_2 to provide back-up positioning capability. While awaiting daylight for the continuation of the instrument array deployment, a bathymetric development of the Site B area, under HIFIX control, was conducted. The RCSS #1, scheduled during this phase, proceeded slowly owing to very troublesome UNIVAC computer performance and heavy weather. To compensate for the delays, all of Line III and several of the inshore stations on other Lines, were deleted. Sites actually occupied during phase I are illustrated in figure la. STD calibration was complicated and degraded by heavy weather because of excessive rolling and the hazardous exposure of the overthe-side sampling facilities. The Site B development, pictured as a STD grid in the project instructions, was executed as a time-series of STD stations at 5 locations in Site B area. Dr. Glenn Cannon suffered a shoulder dislocation during heavy weather on 25 October, and debarked when the ship put in to Port Angeles, Washington, on 26 October. Phase II

commenced 29 October with a 24-hour time-series of STD stations at hourly intervals off Pillar Point, Washington. Unfortunately the positioning of these stations varied about 2 miles, thereby complicating the time dependent changes with geographic variations. Immediately following the Pillar Point series, STD stations were occupied sequentially at 1 hour intervals across the mouth of the Straits of Juan de Fuca for a period of 29 hours; an instrumental failure cut short the planned 48 hour sequence. Times and locations of the stations are shown in section 3.2.

RCSS #2, which was planned as a mid-cruise, STD based survey, was deferred in favor of two parachute droque operations. The first, coded ALPHA, was conducted 1-3 November (local time) near the mid point of LINE II (see fig. 1a). A horizontal current shear had been indicated in this area on 23 October, at depths between 200 and 500 meters by STD stations 77, 78, 79. Existance of the feature was not confirmed by stations 176, 177, 178 occupied on 1 November, immediately prior to the drogue set. Two droques identified as BLUE and ORANGE were set on either side of the suspected shear, with parachutes hung at 250 m depths. One drogue (BLUE) was tracked for a period of 63 hours. However, the parachute line was found broken on one occasion and at least 6-hours of data was lost. The second drogue (ORANGE) was tracked 53 hours with no failure of parachute line noted. Portions of the trajectories (excluding those portions complicated by weak LORAN positioning data) are shown in section 3.1.2. Flashing Xenon lights (20 flashes/min) attached to the drogue buoy staff were found to be excellent visual aids for night time detection, expecially when used in pairs on each buoy. The slight difference in flash rate provided an especially effective perception aid under marginal conditions.

The buoys were constructed stoutly and survived repeated recovery and resetting.

The second parachute drogue tracking operation, "BETA" was started 4 November (local time) near Site Xi with parachutes initially rigged at depths of 90, 230 and 255 m (depths of 50 and 180 meters were used later in this series). Drogues were reset several times, following grounding (and wire breakage). STD stations (Serial Nos. 189 through 202) were occupied during this period across the Canyon in order to provide data for a study of the relationship between thermohaline structure and current velocities. During this period of the cruise, a special shallow test drogue was observed from the bow observation chamber of the ship. It was found that the sugar-solution release system, used to launch the test parachute, failed to operate, thus restraining the parachute from opening.

Phase II was completed 9 November at the conclusion of the drogue work, and the ship returned to Port Angeles for logistic support.

Phase III commenced 11 November, at Line I, with the initiation of the second regional current system study (RCSS #2). STD sensor and data processing troubles were soon encountered, causing frequent stoppages, repairs, reoccupation of defective stations, etc. Again, special STD calibration tests, necessitated by the replacement of sensors, were delayed due to heavy weather. RCSS #2 was interrupted during occupation of Line III, when good weather provided an opportunity to recover the instrument arrays under favorable sea conditions.

The POL and U/W arrays were recovered successfully on 14-15 November including the recovery of the Site A system at night time. Several of the

U/W instruments were found damaged when brought aboard (see Appendix for details). RCSS #2 was resumed 15 November at the southern extremity of the region (Line VII, inshore station) and proceeded northerly. Two long-delayed Nansen casts were conducted while on Line VI to establish calibration data for the malajusted STD. Owing to an ominous weather map for the Pacific received by radio facsimile on 17 November, the inshore portion of Line IV was deleted to insure completion of higher priority work in the Juan de Fuca Canyon. Figure 1b shows the sites occupied on the second RCSS. Two bathymetric sections across the Canyon were run to test the capability of a special signal processing device for the fathometer. A special set of STDs were occupied during this concluding period of the cruise to determine the relationship of water masses occupying the bottom of several arms of the Canyon. The cruise ended 19 November with the ship returning to Seattle.

3. THE DATA

3.1 Current Data

3.1.1 Current Data from Moored Instruments.

The current data from the moored arrays will be presented in a separate report. An inventory of the available current data follows. Current data from Site A: (48° 27.2'N; 124° 38.0'W)

The Site A array (see fig. 2) was implanted 0917 hr, 14 October and recovered **2**100 hr, November 14. Actual records varied for a variety

of reasons, as indicated below:

Meter No.	Depth (m)	Period of Record (+ 8 Time Zone)	Total Hours	Sampling Intrv'l	Remarks
Geodyne G-100	37	0200 OCT 17 to 2100 NOV 14	691.0	10 min	Beginning of film re- cord lost
Aanderaa 354	81	NONE			Recorder failure
Braincon 075	142	0925 OCT 14 to 1217 NOV 9	629.0	10 min	Recorder capacity exceeded
Braincon 054	245	0925 OCT 14 to 2100 NOV 14	756.7	20 min	Norma1

A mechanical depth/time recorder (Marine Advisors Bathykymograph) attached to the array at the float level (nominal depth 37 m) operated from time of launching, 14 October, to about 23 October. As the record is in poor condition (owing to snagging and tearing of the recorder paper) precise interpretation is not possible. A portion of it, redrawn, appears in figure 5. It is clear that the instrument array underwent bend-over or "dips" of at least two classes. The larger, 15 to 20 m, lasted for about 5 hours, the central portion of which is at relatively constant depth. Where the record is readable this class dip reoccurred about 24 hours later. A second class of dip of about 5 meters occurs at about the same time interval. In lieu of better data, an evaluation of the severity of array dip can be surmised from the Geodyne meter-case tilt records. At speeds up to 120 cm/sec, case tilt recorded by Geodyne meter G-100 was always less than 5°. A mean slope of 5° over the entire wire will produce a dip of only 1 m. The current speed-case tilt ratio is variable;

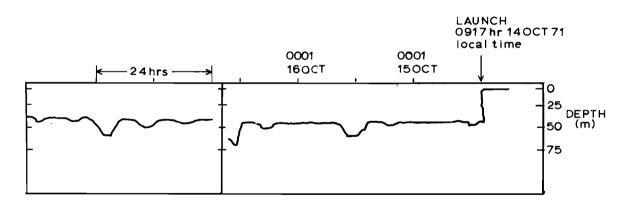


Figure 5. Bathykymograph record from instrument array A. The trace indicates variations in the depth of the top of array A, resulting from horizontal drag forces on the mooring due to currents. (Redrawn from a legible portion of the mutilated original record.)

Current data from Site B_0 : (48° 04.0'N; 125° 18.1'W)

Array B_0 (see fig. 3) was implanted 0854 October 15 and released from the mooring at 1601 November 14. Data records are as follows:

Meter No.	D epth (m)	Period of Record (+ 8 Time Zone)	Total Hours	Sampling Intrv'l	Remarks
Geodyne G-102	19	0830 OCT 19 to 1601 NOV 14	629	10 min	Beginning of record lost
Aanderaa 299	60	0920 OCT 15 to 1601 NOV 14	726.6	10 min	Norma1
Braincon 153	125	1340 OCT 15 to 1301 NOV 14	723.6	20 min	Beginning of record lost
Aanderaa 346	175	0920 OCT 15 to 1601 NOV 14	726.6	10 min	Normal
Anderaa 347	226	0920 OCT 15 to 1601 NOV 14	726.6	10 min	Norma1

however at speeds of 175 cm/sec tilt always exceeded 5° and at 254 cm/sec case tilt reached 40°. A mean slope of 23° over the entire wire would produce a dip of 20 m at the top of the array. Case tilt should be considered in analyses of the higher speed currents as indicative of possible array dip.

The bathykymograph used at Site B_0 did not indicate the dips sensed at Site A. The record shows a smooth variation of about 10 meters over a 3 day period, which we believe is ficticious and due to recorder misalignment. Data on dip from Aanderaa meter 299 will be presented in the separate report listing current meter data.

Current data from Site B1: (48° 00.9'N; 125° 12.7'W)

Array B₁ (see fig. 3) was implanted 1023 October 15 and recovered 1714 November 14. Data records are as follows:

Meter No.	Depth (m)	Period of Record (+ 8 Time Zone)	Total Hours	Sampling Intrv'l	Remarks
Braincon 118	20	1040 OCT 15 to 1522 NOV 9	604.6	10 min	Exceeded Recorder capacity
Aanderaa 298	148	1040 OCT 15 to 1714 NOV 14	726.5	10 min	Norma1

The bathykymograph on array B_1 shows no "dips" of tidal frequency, however a smooth depth increase of about 5 meters, followed by return to initial depth (20 m) occurred between 17 and 20 October.

Array B_2 (see fig. 3) was launched 1725 October 14 and released from moorage 1454 November 14. Meter records are:

Meter No.	Depth (m)	Period of Record (+ 8 Time Zone)	Total Hours	Sampling Intrv'l	Remarks
Braincon 074	22	1740 OCT 14 to 1127 NOV 11	665.8	10 min	Exceeded Recorder capacity
Aanderaa 297	108	1740 OCT 14 to 1454 NOV 14	741.3	10 min	Norma1

The bathykymograph at B₂ flooded; no record was obtained. However the bathykymograph at Site B₁, with similar array configuration indicates that "dip" is not a serious problem at this offshore site.

3.1.2 Currents from parachute drogues

Two drogue tracking operations were conducted. The first coded ALPHA, was conducted 1-3 November (local time) near the midpoint of LINE II utilizing two drogues, BLUE and ORANGE, set at 250 m (see section 2.3 for details). Portions of the drogue trajectories are presented in Plate 1. During the middle period of this operation the trajectories show considerable jitter due to poor LORAN signals: this portion has been omitted from the illustrations. BLUE drogue lost its parachute some time after 1144Z 3 November, and was recovered, rerigged and reset at 2248Z 3 November. Prior to resetting BLUE, STD Stations 179 through 182 were occupied on a line normal to the trajectory of ORANGE to provide thermohaline data for correlation with the observed currents. The drogues exhibited converging trajectories with a net speed of about 20 cm/sec to the ESE. Wind conditions (see section 3.5) varied from calm to over 35 kts during this period.

The second drogue tracking operation, coded BETA was conducted 4-7 November (local time) over the Juan de Fuca Canyon, midway between instrument array Sites A and B (see fig. 1a for general location, section 2.3 for details). Droque trajectories are illustrated in Plate 1. Drogues BLUE (90 m), YELLOW (230 m) and RED (255 m) were initially set out within a few minutes of each at the same location. As they were lost or grounded they were reset, occasionally with changes in the wire length-to-parachute, and at differing locations. STD Stations 183. (location Xj) and 184 (location Xi) were occupied immediately before the drogue set. During the tracking operations, stations 185 through 202 were conducted to make a section across the Canyon near Xj and a time series in the Canyon. The limiting bathymetric depths relative to drogue depth have been sketched on the figures from a manuscript chart kindly provided by N. McGary of the University of Washington. The location of these contours on the trajectory figures is very approximate and should be used only as a guide.

BLUE drogue (90 m) apparently functioned well but was lost soon after 1602Z 6 November.

RED drogue's (255 m) sustained rapid movement up-Canyon aroused suspicions that the wire to parachute was broken, however a physical check

proved it intact. RED was subsequently lost after 1617Z 6 November, and a new drogue, RED_2 , set at Site Xj, 0031Z 7 November, where extensive STD observations were in progress. RED_2 was lost after 1513Z 7 November, and reset as RED_3 at 1631Z 7 November with slightly shortened wire, 247 m. RED_3 was tracked until cessation of the operations.

YELLOW drogue (230 meters, initially) was set at the same time (0134Z 5 Nov) and site as BLUE and RED drogue. Soon after 0720Z 6 November, YELLOW grounded and the wire broke. At 0827Z 6 November it was reset at the origin as a 180 m drogue. Again it grounded and broke wire, soon after 0138Z 7 November, and was reset as a 50 m drogue at 1627Z 7 November. Thereafter it was successfully tracked until 0210Z 8 November.

3.2 STD Station Data

3.2.1 Data Format

The primary output of the shipboard STD system is an essentially real-time data listing on punched paper tape and write-out by electric typewriter. Details of the signal processing system are described in a manuscript report "Programs for Data Acquisition and Processing aboard the NOAA Ship OCEANOGRAPHER" by LTjg Gregory Holloway, December 1970. The program SUPER 4,2. was used, which averages 4 sets of signals from each sensor, compares each value with the average, rejects the most distant value, and recomputes a new average value. An averaged value for each sensor is computed each second, however the typewriter speed limits write-out to once per 3 seconds. As an off-line process, the punch paper tape can be used to drive the shipboard X-Y plotter, to prepare graphs of temperature, salinity, Vaisala-Brunt frequency and sigma-t versus depth. Figure 6 illustrates data from a typical deeper STD station.

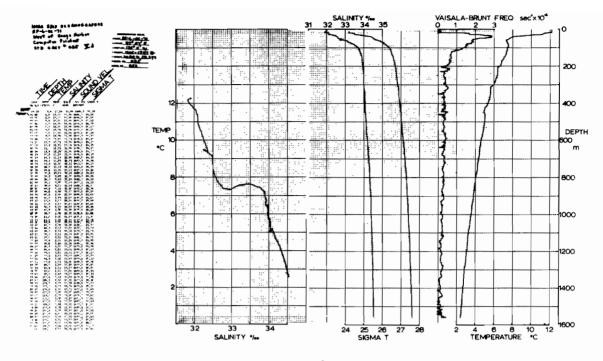


Figure 6. STD Station Data Format.

3.2.2 STD Deployment

As indicated in section 2.2 it was hoped to obtain station data continuously from the surface to within about 4 meters of the bottom. Heavy seas, strong winds and somewhat encumbered maneuvering due to the inoperative condition of the bow thruster, made station keeping (and finding) difficult. As a result, over steeply sloping bottoms in the interest of safety, the sensor was held somewhat higher (8 to 10 m) above the bottom. Despite this, sampling depth as recorded by the STD, exceeded fathomer depth (corrected for sound velocity) about 25% of the time. Some of these inconsistencies could be due to the ship drifting into deeper water during the station, however it is believed that in most cases the fathometer depths are in error, due to the slope effect on the broad beam echo sounder.

3.2.3 STD Calibration

The performance of the STD system was monitored by comparing the STD data with data from Nansen bottles attached to the STD wire immediately above the sensors and with data from conventional Nansen casts. The success of this effort was less than desired due to several factors. Heavy weather prevailing during much of the time, caused considerable ship motion at the stern where the STD was deployed. The resultant vertical surging of the sensor package, largely invalidated calibration attempts for low salinity waters encountered in the Columbia River plume, where vertical thermo-haline gradients are very strong. Further, difficulties with the signal processing system during the early portion of the field work, and sensor failure and replacement at station 213, reduced the number and applicability of the good calibration checks.

For stations 1-213, the calibration data were largely inconclusive except for the determination of a depth correction of 7.5 m for stations 1-17; appropriate adjustment was then made to the data processing system for stations 18-213. Error estimates for stations 1-213 are therefore quoted from the manufacturer's specifications as follows:

Depth	<u>+</u> 5 m
Temperature	<u>+</u> .02 °C
Salinity	+ .03 ⁰ /00

For Stations 214-278, calibration attempts for the replacement sensor package were somewhat more successful. Weather conditions ameliorated enough to allow two Nansen stations to the full depth of the deep STD casts (2000 m), while at the seaward end of the sections. Nansen sta.

No 1 was occuppied in conjunction with STD sta. 236 with 105 minutes between messenger time and end of the STD cast. Nansen sta. No 2 was at the site of STD sta 254, with 88 minutes between the two sets of observations. Data scatter still exceeded previous experience with the system, perhaps more as a result of poor calibration conditions than instrumental instability. Temperature comparisons indicate STD-reversing thermometer differences ranging from $\pm 0.08^{\circ}$ to $-.06^{\circ}$ C, with 60% of comparisons $\pm .04^{\circ}$ C. STD salinity was found to require a depth dependent correction, which was calculated to be: $-0.10/00 - 0.4 \times 10^{-4} Z^{0}/00$ (Z = depth in meters). This correction has been applied to the data presented graphically in this report.

3.2.4 STD Station Inventory

An inventory of STD stations occupied during this cruise is presented on tables 1 and 2 which list the stations by serial number and location, respectively.

3.2.5 Thermohaline Properties in the Study Area October-November 1971

October and November conditions found in the coastal waters are portrayed by a series of surface views (Plate 2) and cross sections (Plates 3 and 4). The October survey was conducted 17-24 October; the November survey was conducted from 12 November to 19 November. Cross sectional views for Lines I, VII, and X from the November survey are presented to depict the temporal changes in properties which occurred at the north and south extremities of the region and centrally at the Juan de Fuca Canyon. The surface views, for October and November utilize data from all stations plotted on the respective figures.

Table 1. STD Station Inventory by Station Number.

no. no. <th>STA</th> <th>LOC'N</th> <th>DATE</th> <th>CAST</th> <th>r</th> <th>STA</th> <th>LOC'N</th> <th>DATE</th> <th>CAST</th> <th></th> <th>STA</th> <th>LOC'N</th> <th>DATE</th> <th>CAST</th> <th> STA</th> <th>LOCIN</th> <th>DATE</th> <th>CAST</th>	STA	LOC'N	DATE	CAST	r	STA	LOC'N	DATE	CAST		STA	LOC'N	DATE	CAST	 STA	LOCIN	DATE	CAST
2 X J L Y 20 46 60 II c 23 140 14 316 42 Y 20 49 61 II b 23 2005 120 PP 30 130 4 X 15 X 15 23 14 43 Y 21 54 62 II e 24 2005 122 PP 30 130 5 I 15 201 45 Y 121 120 64 I b 24 132 PP 30 132 7 I 4 151 734 46 Y 121 691 67 124 133 PP 30 132 7 I 4 151 734 46 Y 121 691 67 124 130 127 130 132 PP 30 132 PP 30 132 PP 30 132 130 PP 30 130 130 130 130 130 130 130 <		LUC'N	DATE	DEPTH			100.1	DATE	DEPTH			100 1	DAID			·	24.12	DEPTH
3 1	1	Ik	14 X	297		40	V 1	20 I	128		79	II d	23 I	1132	118	IS	26 I	305
4 1 <th1< th=""> <th1< th=""> <th1< th=""> <</th1<></th1<></th1<>	2	хj	14 X	345		41	۷j	20 I	86		80	II c	23 I	1600	 119	Is	26 I	202
5 I 6 1 1 1 1 1 1 2 1 2006 122 17 30 1 1 6 X 1 5 I 200 4 1Y 21 120 66 1 2 1 120 PP 30 1 22 7 X 1 5 7 6 1 2 1 134 123 PP 30 1 22 PP 30 1 23 177 23 116 171 24 130 PP 30 1 121 130 PP 30 1 130 PP 30 1 130 PP 30 1 130 PP 30 1 140 141 171 <td>3</td> <td>II</td> <td>14 X</td> <td>316</td> <td></td> <td>42</td> <td>V k</td> <td>20 X</td> <td>49</td> <td></td> <td>81</td> <td>Пр</td> <td>23 X</td> <td>2006</td> <td>120</td> <td>pp*</td> <td>30 I</td> <td>190</td>	3	II	14 X	316		42	V k	20 X	49		81	Пр	23 X	2006	120	pp *	30 I	190
6 X 15 X 201 45 YY 4 21 X 120 44 Y 1 21 X 120 121 131 65 1 2 120 120 120 120 120 120 120 120 120 120 120 120 120 121 131 66 1 2 120	4	Ih	15 I	314		43	IV k	21 I	54		82	11 .	24 I	2000	121	PP	30 X	176
7 x 4 17 17 17 17 17 17 134 17 134 17 134 17 134 17 134 17 134 17 134 17 134 101 125 17 301 177 9 VII 6 17 2000 48 74 11 931 67 1 2 12 126 PP 301 127 PP 301 125 10 VII 6 17 2000 49 Tree 21 741 66 1 2 12 126 PP 301 126 PP 301 126 11 VII 6 17 268 51 TY 6 21 124 90 12 <	5	Ig	15 X	287		44	IVj	21 X	92		83	Ia	24 I	2006	122	PP	30 X	187
6 VII 17 1996 47 TV g 21 X 555 66 I 2 X 110 125 FF 30 X 177 9 VII b 17 I 2000 48 IV f 21 I 691 67 I e 24 I 732 126 FF 30 I 125 10 VII e 17 I 2000 49 IVe 21 X 741 66 I f 24 X 330 127 FF 30 X 135 11 17 I 126 50 TV e 21 X 144 90 I h 24 X 137 129 FP 30 X 136 12 VII f 17 I 682 53 TV e 21 X 1044 91 14 2X X 105 132 FP 30 X 136 14 VII f 171 136 54 TV e 22 X 1003 93 7.X 24 X 103 197 90 X	6	Xf	15 X	201		45	IV 1	21 X	120		84	IЪ	24 I	1324	123	PP	30 I	192
9 VII b 17 2000 46 TV f 21 690 167 16 21 722 126 PP 301 122 10 VII c 17 2000 49 Tve 21 741 881 17 24 130 127 PP 301 125 11 VII c 17 2882 51 TV c 21 997 69 1 24 1 185 128 PP 301 170 12 VII c 17 282 51 TV d 21 1644 91 1 24 1 105 132 PP 301 162 14 TI g 27 228 53 TV b 21 2003 92 1 24 105 132 PP 301 162 15 TI 1 17 136 55 TV c 22 1203 92 1 25 132 PP 301 176 16 TI 1 17 136 54 <td< td=""><td>7</td><td>Xd</td><td>15 X</td><td>734</td><td></td><td>46</td><td>IV h</td><td>21 X</td><td>173</td><td></td><td>85</td><td>Ιc</td><td>24 X</td><td>1388</td><td>124</td><td>PP</td><td>30 I</td><td>182</td></td<>	7	Xd	15 X	734		46	IV h	21 X	1 73		85	Ιc	24 X	1388	124	PP	30 I	182
10 VII c 17 2000 49 Twee 21 741 68 If 24 130 127 PP 30 I 155 11 VII d 17 1288 50 TV 21 997 69 Ig 24 185 126 PP 30 I 155 12 VII e 17 1282 51 TV e 21 1417 900 Ih 24 1 137 1289 PP 30 I 176 13 VII f 17 228 53 TV b 21 I 1648 91 I 1 24 60 130 PP 30 I 169 14 VII f 17 I 156 54 TV e 22 I 1200 93 7.x 24 I 105 132 PP 30 I 169 17 VII f 17 I 156 57 I b 22 I 1265 95 I y 25 I 148 135 PP 30 I 177 16 VII f 18 I <td>8</td> <td>VII a</td> <td>17 I</td> <td>1996</td> <td></td> <td>47</td> <td>IV g</td> <td>21 I</td> <td>555</td> <td></td> <td>86</td> <td>Id</td> <td>24 I</td> <td>1101</td> <td>125</td> <td>PP</td> <td>30 I</td> <td>177</td>	8	VII a	17 I	1996		47	IV g	21 I	555		86	Id	24 I	1101	125	PP	30 I	177
11 VII 4 17 1 288 50 TV 2 1 997 69 I g 1, g 2, i 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	9	VII D	17 I	2000		48	IV f	21 I	891		87	Ie	24 I	732	126	PP	30 I	182
12 VII.e 17 682 51 IV 21 14/7 90 1 24 1 137 129 PP 30 1 16 13 VII.f 17 549 52 IV 21 1648 91 I 24 137 129 PP 30 1 16 14 VII.f 17 228 53 IV 21 2003 92 I 24 105 112 PP 30 179 15 VII.h 17 136 55 IV 22 1203 93 7.x 24, I 105 112 PP 30 1 10 1 12 PP 30 1 10 116 102 PP 30 1 10 116 102 105 112 PP 30 1 10 16 102 107 104 121 100 104 11 21 105 116 107 101 16 25 148 137 106 177 </td <td>10</td> <td>VII c</td> <td>17 I</td> <td>2000</td> <td></td> <td>49</td> <td>IVea</td> <td>21 I</td> <td>741</td> <td></td> <td>88</td> <td>If</td> <td>24 I</td> <td>330</td> <td>127</td> <td>PP</td> <td>30 I</td> <td>155</td>	10	VII c	17 I	2000		49	IVea	21 I	741		88	If	24 I	330	127	PP	30 I	155
13 VIII f 17 549 52 TV c 21 1644 91 II 4 24, I 60 130 FP 30 I 160 14 VIII f 17 228 53 TV b 21, I 2003 92 I, J 24, I 55 131 FP 30 I 162 15 VII h 17 136 55 IV a 22, I 2003 93 7, x 24, I 105 132 FP 30 I 179 16 VII 4 17, I 136 55 IV 4 22, I 1407 94, If f 25, I 232 133 FP 30 I 179 16 VII 4 18, I 56 57 Ib 22, I 1065 96 Ic 25, I 235 136 FP 30 I 179 19 VI a 18, I 32 56 Ic 22, I 449 97 If 25, I 235 136 FP 30 I 176 20 VI a 18, I 43 59 Id 22, I 647	11	VII d	17 I	1288		50	IV e	21 I	997		89	Ig	24 I	185	12 8	PP	30 I	170
14 VII g 17 X 228 53 IV b 21 I 2003 92 I J 24 I 55 131 PP 30 I 182 15 VII h 17 X 136 54 IV e 22 I 2003 93 7.x 24 I 105 132 PP 30 I 182 16 VII h 17 X 136 55 IV d 22 I 1407 94 I f 25 I 232 133 PP 30 I 179 16 VII h 18 I 56 57 I b 22 I 166 96 I e 25 I 418 135 PP 30 I 179 19 VI a 18 I 32 58 I c 22 I 647 96 I a 25 I 418 136 PP 30 I 162 20 VI 1 18 I 43 59 I d 22 I 647 96 I a 25 I 430 137 PP 30 I 162 20 VI 1 18 I 423 <td>12</td> <td>VII e</td> <td>17 I</td> <td>882</td> <td></td> <td>51</td> <td>IV d</td> <td>21 I</td> <td>1417</td> <td></td> <td>90</td> <td>Ih</td> <td>24 I</td> <td>137</td> <td>129</td> <td>PP</td> <td>30 I</td> <td>176</td>	12	VII e	17 I	882		51	IV d	21 I	1417		90	Ih	24 I	137	129	PP	30 I	176
15 VI h 17 156 54 IV a 22 200 99 7 24 105 132 PP 30 I 179 16 VI i 17 136 55 IV d 22 1447 94 II 25 I 232 133 PP 30 I 190 16 VI i 17 136 55 IV d 22 I 1245 95 IY 25 I 149 134 PP 30 I 179 18 VI i 18 I 56 57 I b 22 I 1068 96 I e 25 I 416 135 PP 30 I 179 19 VI m 18 I 32 58 I c 22 I 647 98 I f m 25 I 416 135 PP 30 I 162 20 VI i 18 I 43 59 I d 22 I 469 99 I m 25 I 136 137 PP 30 I 166 22 VI j 18 I 77 64 <td>13</td> <td>VII f</td> <td>17 I</td> <td>549</td> <td></td> <td>52</td> <td>IV c</td> <td>21 I</td> <td>1648</td> <td></td> <td>91</td> <td>Ii</td> <td>24 I</td> <td>80</td> <td>130</td> <td>PP</td> <td>30 I</td> <td>180</td>	13	VII f	17 I	549		52	IV c	21 I	1648		91	Ii	24 I	80	130	PP	30 I	180
16 VTI 1 17 I 136 55 IV 4 22 I 1407 94 If 25 I 133 PP 30 I 140 17 VII j 17 I 88 56 I a 22 I 1245 95 I y 25 I 149 134 PP 30 I 179 18 VII k 18 I 35 55 I c 22 I 1068 96 I c 25 I 149 134 PP 30 I 179 19 VI a 18 I 32 56 I c 22 I 647 96 I c 25 I 148 135 PP 30 I 177 20 VI 1 16 I 42 60 I c 22 I 409 99 I a 25 I 148 138 PP 30 I 166 22 VI j 18 I 97 61 I f 22 I 262 100 I h 25 I 140 PP 30 I 166 24 VI h 18 I 97 61 I f	14	VII g	17 I	228		53	IV b	21 I	2003		92	IJ	24 I	55	131	PP	30 I	182
17 VII j 17 I 88 56 I a 22 I 125 95 I y 25 I 149 134 PP 30 I 178 18 VII k 18 I 56 57 I b 22 I 1068 96 I e 25 I 149 134 PP 30 I 178 18 VII k 18 I 32 58 I c 22 I 647 98 I f 25 I 200 137 PP 30 I 177 20 VI 1 18 I 43 59 I d 22 I 647 98 I f 25 I 280 137 PP 30 I 177 21 VI k 18 I 77 61 I f 22 I 660 I f 21 I 100 I h 25 I 314 139 PP 30 I 166 22 VI h 18 I 777 64 I h 21 I 348 100 I f 25 I 260 142 PP 30 I 166 24 VI h	15	VII h	17 I	158		54	IV a	22 I	2003		93	Хx	24 I	105	132	PP	30 X	179
18 VII k 18 I 56 57 I b 22 I 1068 96 I e 25 I 418 135 PP 30 I 179 19 VI m 18 I 32 58 I c 22 I 849 97 I f 25 I 235 136 PP 30 I 182 20 VI 1 18 I 43 59 I d 22 I 647 98 I f 25 I 280 137 PP 30 I 177 21 VI k 18 I 77 61 I f 22 I 409 99 I s 25 I 314 138 PP 30 I 166 22 VI j 18 I 77 61 I f 22 I 262 100 I h 25 I 420 140 PP 30 I 166 24 VI h 18 I 727 64 I j 23 I 348 103 I f a 25 I 143 PP 30 I 166 25 VI g 18 I 727 64	16	VJI 1	17 I	136		55	IV d	22 I	1407		94	If	25 I	232	133	PP	30 I	180
19 VI = 18 I 32 58 I c 22 I 849 97 I f 25 I 235 136 PP 30 I 182 20 VI 1 18 I 43 59 I d 22 I 647 98 I fs 25 I 280 137 PP 30 I 182 21 VI k 18 I 62 60 x e 22 I 409 99 I s 25 I 314 138 PP 30 I 166 22 VI j 18 I 97 61 I f 22 I 262 100 I h 25 I 314 139 PP 30 I 166 23 VI i 18 I 277 64 I h 22 I 148 102 I f 25 I 213 1441 PP 30 I 166 24 VI h 18 I 777 64 I h 23 I 348 103 I f 25 I 213 1441 PP 30 I 166 25 VI e 18 I 1749	17	VII j	17 I	88		56	Ia	22 I	1245		95	Iy	25 I	149	134	PP	30 I	178
20 VI 1 18 I 43 59 I d 22 I 647 96 I fs 25 I 280 137 PP 30 I 177 21 VI 1 18 I 62 60 I e 22 I 409 99 I s 25 I 196 138 PP 30 I 166 22 VI 1 18 I 97 61 I f 22 I 262 100 I h 25 I 314 139 PP 30 I 166 23 VI 1 18 I 225 62 I g 22 I 301 101 I e 25 I 420 140 PP 30 I 166 24 VI h 18 I 727 64 I i 23 I 348 100 I f a 25 I 143 144 PP 30 I 166 26 VI f 18 I 1749 66 I j 23 I 298 105 I h z5 I 193 144 PP 30 I 169 28 VI e 18 I 2002 67	18	VII k	18 I	56		57	хъ	22 I	1068		96	Ie	25 I	418	135	PP	30 I	179
21 VI k 18 60 16 22 I 409 99 I k 25 I 198 138 PP 30 I 166 22 VI k 18 I 97 61 I f 22 I 262 100 I h 25 I 198 138 PP 30 I 166 22 VI j 18 I 97 61 I f 22 I 262 100 I h 25 I 314 139 PP 30 I 186 23 VI i 18 I 225 62 I g 22 I 301 101 I e 25 I 420 140 PP 30 I 186 24 VI h 18 I 727 64 I i 23 I 348 103 I f a 25 I 143 PP 30 I 186 25 VI g 18 I 749 66 I j 23 I 298 105 I h 25 I 319 144 PP 30 I 186 26 VI d 18 I 2002 67 I k 23 I 294 <t< td=""><td>19</td><td>VI m</td><td>18 I</td><td>32</td><td></td><td>58</td><td>Ic</td><td>22 I</td><td>849</td><td></td><td>97</td><td>If</td><td>25 I</td><td>235</td><td>136</td><td>PP</td><td>30 I</td><td>182</td></t<>	19	VI m	18 I	32		58	Ic	22 I	849		97	If	25 I	235	136	PP	30 I	182
22 VI j 18 I 97 61 If 22 I 262 100 Ih 25 I 110 139 PP 30 I 180 23 VI j 18 I 97 61 If 22 I 262 100 Ih 25 I 314 139 PP 30 I 180 23 VI j 18 I 225 62 Ig 22 I 301 101 Ie 25 I 420 140 PP 30 I 186 24 VI h 18 I 727 64 II 23 I 348 103 If a 25 I 286 142 PP 30 I 186 25 VI g 18 I 727 64 II 23 I 348 103 If a 25 I 139 144 PP 30 I 186 26 VI g 18 I 1749 66 I g 23 I 298 105 Ih a 25 I 344 144 PP 30 I 186 27 VI e 19 I 2000	20	VI 1	18 I	43		59	Id	22 I	647		98	I fa	25 I	280	137	PP	30 I	177
23 VI 1 18 I 225 62 I g 22 I 301 101 I e 25 I 420 140 PP 30 I 186 24 VI 1 18 I 408 65 I h 22 I 148 102 I f 25 I 420 140 PP 30 I 186 25 VI g 18 I 727 64 I 1 23 I 348 103 I fs 25 I 236 142 PP 30 I 186 26 VI g 18 I 727 64 I 1 23 I 344 104 I s 25 I 236 142 PP 30 I 186 26 VI g 18 I 1095 65 I h 23 I 298 105 I h 25 I 314 144 PP 30 I 180 27 VI e 18 I 749 66 I j 23 I 298 106 I e 25 I 344 1445 II e 30 I 228 30 VI e 19 I 2000 68 VIII e 23	21	VIk	18 I	82		60	Ie	22 I	409		99	Is	25 I	198	138	PP	30 I	186
24 YI b 18 I 408 65 I b 22 I 148 102 I f 25 I 213 141 PP 30 I 185 25 VI g 18 I 727 64 I 1 23 I 348 103 I f a 25 I 213 141 PP 30 I 185 26 VI g 18 I 1095 65 I b 23 I 344 104 I s 25 I 193 143 PP 30 I 186 26 VI f 18 I 1095 65 I b 23 I 298 105 I b 25 I 193 144 PP 30 I 186 27 VI e 18 I 1749 66 I j 23 I 298 106 I e 25 I 344 145 II a 30 I 125 29 VI e 19 I 2000 68 VIIIe 23 I 25 I 107 I f 25 I 229 146 II b 30 I 125 30 VI e 19 I	22	VI j	1 8 I	97		61	If	22 I	262		100	Ih	25 I	314	139	PP	30 I	180
25 VI g 18 I 727 64 I i 23 X 348 103 I fa 25 I 266 142 IP 30 I 186 26 VI g 18 I 727 64 I i 23 X 348 103 I fa 25 I 286 142 PP 30 I 186 26 VI g 18 I 1095 65 I h 23 X 344 104 I g 25 I 193 143 PP 30 I 186 27 VI e 18 I 1749 66 I j 23 X 298 105 I h 25 I 314 144 PP 30 I 180 28 VI e 18 I 2002 67 I k 23 I 294 106 I e 25 I 344 144 PP 30 I 125 29 VI c 19 I 2000 68 VIIIe 23 I 25 107 I fa 25 I 229 146 II h 30 I 228 30 VI b 19 I <	23	VI 1	18 I	225		62	Ig	22 I	301		101	Ie	25 I	420	140	PP	30 I	186
26 VI f 18 f 1095 65 1 h 23 X 344 104 I s 25 I 193 143 PP 30 I 184 27 VI e 18 I 1749 66 I j 23 X 344 104 I s 25 I 193 143 PP 30 I 186 28 VI e 18 I 1749 66 I j 23 X 298 105 I h 25 I 314 144 PP 30 I 180 28 VI e 18 I 2002 67 I k 23 X 298 106 I e 25 I 344 144 PP 30 I 125 29 VI c 19 I 2000 68 VIIIe 23 X 52 107 I f 25 I 229 146 II b 30 I 228 30 VI b 19 I 1999 69 VIIIE 23 I 267 109 I s 25 I 212 148 II d 30 I 126 31 VI a 20 I	24	VI h	18 I	408		63	Ih	22 I	148		102	If	25 I	213	141	PP	30 I	185
27 VI e 18 I 1749 66 I j 20 I 298 105 I h 25 I 319 144 PP 30 I 180 28 VI d 18 I 2002 67 I k 23 I 298 106 I e 25 I 319 144 PP 30 I 180 28 VI d 18 I 2002 67 I k 23 I 294 106 I e 25 I 344 145 II k 30 I 125 29 VI c 19 I 2000 68 VIIIe 23 I 236 107 I f 25 I 229 146 II b 30 I 228 30 VI b 19 I 1999 69 VIIIe 23 I 236 108 I f 25 I 220 146 II c 30 I 126 31 VI e 19 I 996 70 VIIIe 23 I 267 109 I I s 25 I 212 148 II d 30 I 126 32 V a 20 I 1500 <	25	VI g	18 X	727		64	I 1	23 I	348		103	I fa	25 I	286	142	PP	30 I	186
28 VI d 18 I 2002 67 I k 23 I 294 106 I e 25 I 344 145 II a 30 I 125 29 VI c 19 I 2000 68 VIIIe 23 I 52 107 I f 25 I 344 145 II a 30 I 125 30 VI b 19 I 1999 69 VIIId 23 I 236 108 I f a 25 I 229 146 II b 30 I 228 30 VI b 19 I 1999 69 VIIId 23 I 236 108 I f a 25 I 220 146 II b 30 I 236 31 VI a 19 I 996 70 VIIIE 23 I 267 109 I a 25 I 212 148 II d 30 I 126 32 V a 20 I 1500 71 VIIIB 23 I 122 110 I h 25 I 318 149 II c 30 I 241 33 V b <td< td=""><td>26</td><td>VI f</td><td>18 I</td><td>1095</td><td></td><td>65</td><td>Ih</td><td>23 I</td><td>344</td><td>_</td><td>104</td><td>Is</td><td>25 I</td><td>193</td><td>143</td><td>PP</td><td>30 I</td><td>184</td></td<>	26	VI f	18 I	1095		65	Ih	23 I	344	_	104	Is	25 I	193	143	PP	30 I	184
29 VI c 19 I 2000 68 VIIIe 23 I 52 107 I f 25 I 229 146 II b 30 I 228 30 VI b 19 I 1999 69 VIIIe 23 I 256 108 I f a 25 I 229 146 II b 30 I 228 30 VI b 19 I 1999 69 VIIIe 23 I 256 108 I f a 25 I 229 146 II b 30 I 228 31 VI a 19 I 996 70 VIIIe 23 I 267 109 I a 25 I 212 148 II d 30 I 126 32 V a 20 I 1500 71 VIIIb 23 I 122 110 I h 25 I 318 149 II c 30 I 241 33 V b 20 I 1997 72 VIIIa 23 I 102 111 I e 25 I 500 150 II b 31 I 241 34 V c <t< td=""><td>27</td><td>VI e</td><td>18 I</td><td>1749</td><td></td><td>66</td><td>Ij</td><td>23 I</td><td>298</td><td></td><td>105</td><td>Ih</td><td>25 I</td><td>319</td><td>144</td><td>PP</td><td>30 I</td><td>180</td></t<>	27	VI e	18 I	1749		66	Ij	23 I	298		105	Ih	25 I	319	144	PP	30 I	180
30 VI b 19 I 1999 69 VIIId 23 I 236 108 I fa 25 I 290 147 II c 30 I 250 31 VI a 19 I 9996 70 VIIId 23 I 267 109 I a 25 I 212 148 II d 30 I 126 32 V a 20 I 1500 71 VIIIB 23 I 2267 109 I a 25 I 212 148 II d 30 I 126 32 V a 20 I 1500 71 VIIIB 23 I 122 110 I b 25 I 318 149 II c 30 I 241 33 V b 20 I 1997 72 VIIIB 23 I 102 111 I e 25 I 500 150 II b 31 I 241 34 V c 20 I 1569 73 II j 23 I 87 112 I fa 25 I 302 152 II b 31 I 226 35 V d 2	28	VI d	18 I	2002		67	Ik	23 I	294		106	Ie	25 I	344	145	IX a	30 I	125
31 VI a 19 I 996 70 VIIIc 23 I 267 109 I s 25 I 212 148 II d 30 I 126 32 V a 20 I 1500 71 VIIIc 23 I 122 110 I h 25 I 212 148 II d 30 I 126 32 V a 20 I 1500 71 VIIIc 23 I 122 110 I h 25 I 318 149 II c 30 I 241 33 V b 20 I 1997 72 VIIIa 23 I 102 111 I e 25 I 500 150 II b 31 I 242 34 V c 20 I 1569 73 II j 23 I 67 112 I fa 25 I 200 150 II b 31 I 226 35 V d 20 I 1549 74 II I 23 I 92 114 I fa 25 I 302 152 II b 31 I 226 36 V e 20 I </td <td>29</td> <td>¥I c</td> <td>19 X</td> <td>2000</td> <td></td> <td>68</td> <td>VIIIe</td> <td>23 I</td> <td>52</td> <td></td> <td>107</td> <td>If</td> <td>25 I</td> <td>229</td> <td>146</td> <td>ць</td> <td>30 I</td> <td>228</td>	29	¥I c	19 X	2000		68	VIIIe	23 I	52		107	If	25 I	229	146	ць	30 I	228
32 V a 20 I 1500 71 VIIIb 23 I 122 110 I b 25 I 318 149 II c 30 I 241 33 V b 20 I 1997 72 VIIIa 23 I 102 111 I e 25 I 318 149 II c 30 I 241 34 V c 20 I 1569 73 II j 23 I 87 112 I fa 25 I 217 151 II a 31 I 228 35 V d 20 I 1549 74 II I a 23 I 35 113 I fa 25 I 302 152 II b 31 I 288 36 V e 20 I 1549 74 II I a 23 I 92 114 I a 264 153 II c 31 I 226 36 V e 20 I 1141 75 II h 23 I 92 114 I a 264 153 II c 31 I 246 37 V g 20 I 293 76	30	AI P	19 I	1 999		69	VIIId	23 I	236		108	I fa	25 I	290	147	II c	30 X	250
33 V b 20 I 1997 72 VIIIa 23 I 102 111 I e 25 I 500 150 II b 31 I 228 34 V c 20 I 1569 73 II j 23 I 67 112 I fa 25 I 217 151 II a 31 I 228 35 V d 20 I 1549 74 II 1 23 I 135 113 I fa 25 I 302 152 II b 31 I 226 36 V e 20 I 1141 75 II h 23 I 92 114 I s 26 I 218 153 II c 31 I 246 37 V g 20 I 293 76 II g 23 I 176 115 I h 26 I 298 154 II d 31 I 183 38 V f 20 I 2626 77 II f 23 I 378 116 I e 26 I 427 155 II c 31 I 248	31	VIA	1 9 I	996		70	VIIIc	23 I	267		109	Is	25 I	212	148	ц	30 I	126
34 V c 20 I 1569 73 II j 23 X 87 112 I fa 25 I 217 151 II a 31 X 183 35 V d 20 I 1549 74 II i 23 I 135 113 I fa 25 I 217 151 II a 31 I 183 36 V e 20 I 1549 74 II i 23 I 92 114 I fa 25 I 302 152 II b 31 I 266 37 V g 20 I 293 76 II g 23 I 176 115 I h 26 I 298 154 II d 183 38 V f 20 I 626 77 II f 23 X 378 116 I e 26 I 427 155 II c 31 I 248	32	Va	20 I	1500		71	AIIP	23 X	122		110	Ih	25 I	318	149	II c	30 I	241
34 V c 20 I 1569 73 II j 23 X 87 112 I fa 25 I 217 151 II a 31 I 163 35 V d 20 I 1549 74 II 1 23 I 135 113 I fa 25 I 217 151 II a 31 I 163 36 V e 20 I 1141 75 II h 23 I 92 114 I a 26 I 153 II c 31 I 266 37 V g 20 I 293 76 II g 23 I 176 115 I h 26 I 298 154 II d 183 183 38 V r 20 I 626 77 II f 23 I 376 116 I e 26 I 427 155 II c 31 I 246	33	۷ъ	20 I	1997		72	VIIIa	23 X	102		111	Ie	25 I	500	150	пь	31 X	228
36 V • 20 I 1141 75 II h 23 I 92 114 I I 26 I 218 153 II c 31 I 246 37 V g 20 I 293 76 II g 23 I 176 115 I h 26 I 298 154 II d 31 I 246 38 V r 20 I 626 77 II r 23 I 378 116 I e 26 I 427 155 II c 31 I 248		Vc	20 I	1569		73	Πj	23 X	87		112	I fa	25 I	217	151	II a	31 X	183
37 V g 20 I 293 76 II g 23 I 176 115 I h 26 I 298 154 II d 31 I 183 38 V f 20 I 626 77 II f 23 I 378 116 I e 26 I 298 154 II d 31 I 183	35	V d	20 I	1549		74	II 1	23 I	135		113	I fa	25 I	302	152	ць	31 X	226
38 V f 20 I 626 77 II f 23 I 378 116 I 26 I 427 155 II c 31 I 248	36	V e	20 X	1141		75	II h	23 I	92		114	Is	26 I	218	153	Πc	31 I	246
38 V f 20 I 626 77 II f 23 I 378 116 I e 26 I 427 155 II c 31 I 248	37	Vg	20 I	293		76	IIg	23 I	176		115	Ih	26 I	298	154	IX d	31 I	183
	38	1 V	20 I	626		77	II f	23 X	378		116	Ie	26 I	427	 155	IX c	31 X	248
	39	Vh	20 I	164		78	II e	23 I	794		117	If	26 I	237	156	ць	31 X	227

STD STATION INVENTORY BY STATION NUMBER

* PP Pillar Pt. near 48° 18'N, 124° 04'W.

STD STATION INVENTORY BY STATION NUMBER (CONTINUED)

STA NO.	LOC'N	DATE	CAST DEPTH	5	STA	LOC'N	DATE	CAST DEPTH		STA NO.	LOC'N	DATE	CAST	STA NO.	LOC'N	DATE	CAST DEPTH
157	Па	31 X	183		198	β _	7 XI	318		237	VI b	16 XI	2002	276	Ĩu	19 XI	188
158	ΙХЪ	31 X	227		199	B _0	7 XI	325	_	238		16 XI	2001	277	Xv	19 XI	182
159	Πc	31 X	251		200	B _c	7 XI	320		239		16 XI	2001	278	Xz	19 XI	225
160	IX d	31 X	224		201	ßc	8 XI	301		240		17 XI	1804				
161	IX c	31 X	243	:	202	\$ _c	7 XI	321		241	VIg	17 XI	726				
162	ΙХЪ	31 X	234		203	Ii	12 %I	76		242	VI 1	17 XI	363				
165	II a	31 X	249		204	Ιh	12 XI	£21		243	VI i	17 XI	184				
166	II d	1 11	153		205	Ιg	12 XI	168		244	VI j	17 XI	117				
167	Πc	1 XI	244	:	206	Ιf	12 XI	349		245	VI k	17 XI	91				
16 8	ΙХЪ	1 XI	223	1	207	Ie	12 XI	707		246	¥j	17 I I	98				
169	II a	1 XI	171		208	Id	12 XI	1104		247	۷i	17 XI	139				
170	IX b	1 XI	228	1	209	Ιc	12 XI	1296		248	V h	17 XI	184				
171	LX c	1 XI	244		210	Ia	12 XI	1967		249	۷g	17 XI	354				
172	IX d	1 XI	203	2	211	Ιc	12 XI	1280		250	¥f	17 XI	842				
173	Πc	1 XI	243	1	212	II a	13 XI	2005		251	¥e	17 XI	1255				
174	11 в	1 %1	220	2	213	II Ь	13 XI			252	٧d	1 7 XI	1579				
175	πь	1 XI	230		214	II Ь	13 XI	2008		253	¥c	17 XI	1863				
176	II f	1 XI	362		215	II d	13 XI	1255		254	۷ь	18 XI	1 998				
177	II e	1 XI	699		216	II e	13 XI	734		255	¥a	18 XI	2001				
178	II d	1 XI	702	1	217	II f	13 XI	360		256	IVa	18 XI	2002				
179	a* a	3 XI	883	1	218	Πg	13 XI	180		257	IVЬ	18 XI	1999				
180	αъ	3 XI	536	4	219	II h	13 XI	93		258	IV c	18 XI	1723				
181	a c	3 II	531		220	II i	13 XI	106		259	IV d	18 XI	1374				
182	a d	3 XI	260	1	221	III f	13 XI	760		260	Xa	18 XI	1226				
183	Χj	4 XI	331		222	III e	13 XI	1114		261	хь	18 XI	1007				
184	Xi	4 XI	340		223	III d	13 XI	1539		262	Ĭc	18 XI	778				
185	Хj	5 XI	319		224	III c	13 XI	1780		263	Xd	18 XI	713				
186	Xi	5 XI	341		225	III P	14 XI	1770		264	Ιe	18 XI	534				
187	Xh	5 XI	336	1	226	IIIaa	14 XI	2006		265	Xf	18 XI	204				
188	X j	6 XI	321	1	227	VII 1	14 XI	147		266	Χg	18 XI	308				
189	\$** a	6 XI	121		228	VII h	14 XI	162		267	Xh	18 XI	317				
190	# b	6 XI	203	1	229	VII g	1 6 XI	271		268	Xi	19 XI	287				
191	₿ c	6 XI	320	1	230	VII f	16 XI	619		269	Хj	19 XI	225				
192	ß d	6 XI	247	2	231	VII e	16 XI	875		270	Xk	19 XI	313				
193	8.	6 XI	165	1	232	VII d	16 XI	1297		271	IX d	19 XI	1 97				
194	ßc	7 II	318	1	233	VII c	16 XI	2001		272	11 c	19 XI	251				
195	₿ c	7 XI	312	1	234	VII b	16 XI	2002		273	IX b	19 XI	222				
196	₿ c	7 XI	295	1	235	VII a	16 XI	2000		274	IX a	19 XI	165				
197	₿ c	7 XI	314	1	236	VI a	16 XI	2002		275	Xw	19 XI	181				

For Drogue set **β** near location II e
 For Drogue set **β** near location X j

Table 2. S	D Station	Inventory	by	Location.
------------	-----------	-----------	----	-----------

STD	STATION	INVENTORY	ВΥ	LOCATION

LINE	LOC'N DESIG	STA NO.	DATE	LINE	LOC'N	STA NO.	DATE	_	LINE	LOC'N DESIG	STA NO.	DATE	_	LINE	LOC'N DESIG	STA NO.	DATE
г	a	83	24 X	ш	g	218	13 XT		v	k	42	20 X		VII	d		17 X
I	b	84	24 X	 11	h	219	13 XI		v	j	246	17 XI		VII	е	12	17 X
I	с	85	24 X	11	i	220	13 XI		v	i	247	17 XI		VII	f	13	17 X
I	d	86	24 X						v	h	248	17 XI		VII	g	14	17 X
I	е	87	24 X	111	f	221	13 XI		v	g	249	17 XI		VII	h	15	17 X
I	f	88	24 X	III	e	222	13 XI		v	f	250	17 XI		VII	i	16	17 X
I	g	89	24 X	III	đ	223	13 XI		v	e	251	17 XI		VII	j	17	17 X
I	h	90	24 X	III	c	224	13 XI		v	d	252	17 XI		VII	k	18	18 X
I	i	91	24 X	III	ъ	225	14 XI		v	c	253	17 XI		VII	1	227	14 XI
I	j	92	24 X	III	aa	226	14 XI		v	b	254	18 XI		VII	h	228	14 XI
I	i	203	12 XI						v	a	255	18 XI		VII	g	229	16 XI
I	h	204	12 XI	IV	k	.43	21 X							VII	f	230	16 XI
I	g	205	12 XI	IV	j	44	21 X		VI	-	19	18 X		VII	e	231	16 XI
I	f	206	12 XI	IV	i	45	21 X		VI	1	20	18 X		VII	d	232	16 XI
г		207	12 XI	 IV	h	46	21 X		VI	k	21	18 X		VII	c	233	16 XI
I	d	208	12 XI	 IV	g	47	21 X		VI	ı	22	18 X		VII	ь	234	16 XI
I ·	с	209	12 XI	 IV	f	48	21 X		vı	1	23	18 X		VII	а	235	16 XI
I	a	210	12 XI	IV	ea	49	21 X		vı	h	24	18 X					
I	c	211	12 XI	IV	e	50	21 X		VI	E	25	18 X		VIII	e	68	23 XI
				IV	d	51	21 X		VI	f	26	18 X		VIII	d	69	23 XI
II	j	73	23 X	IV	c	52	21 X		VI	e	27	18 X		VIII	c	70	23 XI
11	i	74	23 X	IV	ъ	53	21 X	_	٧I	d	28	1 8 X		VIII	ь	71	23 XI
11	h	75	23 X	IV	a	54	22 I		٧I	с	29	19 X		VIII	a	72	23 XI
II	g	75	23 X	IN	d ²	55	22 X		٧I	b	30	19 X	_				
п	f	77	23 X	 IV	a	256	18 XI		VI	a	31	19 X		IX	a	145	30 X
II	e	78	23 X	IV	ъ	257	18 XI		٧I	a	236	16 XI		IX	ъ	146	30 X
11	d	79	23 X	IV	c	258	18 XI		VI	ъ	237	16 XI		IX	c	147	30 X
II	c	80	23 X	 IV	d	259	18 XI		VI	c	238	16 XI		ц	d	148	30 X
II	ъ	81	23 X						٧I	d	239	17 XI		IX	c	149	30 X [`]
11	a	82	24 X	v	a	32	20 X		VI	e	240	17 XI		IX	ъ	150	31 X
II	f	176	1 XI	v	ь	33	20 X		VI	g	241	17 XI		IX	a	151	31 X
п	e	177	1 XI	v	c	34	20 X		VI	1	242	17 XI		ц	ь	152	31 X
II	d	178	1 XI	v	d	35	20 X		VI	i	243	17 XI		IX	c	153	31 X
II	a	212	12 XI	 v	e	36	20 X		VI	J	244	17 XI		IX	đ	154	31 X
п	ъ	213	13 XI	v	g	37	20 X		VI	k	245	•17 XI		IX	c	155	31 X
II	b	214	13 XI	v	f	38	20 X							IX	ь	156	31 X
II	d	215	13 XI	v	h	39	20 X		VII	a	8	17 X		IX	a	157	31 X
II	e	216	13 XI	v	i	40	20 X		VII	ь	9	17 X		IX	b	158	31 X
II	f	217	13 XI	v	j	41	20 X		VII	с	10	17 X		IX	с	159	31 X

Table 2. (continued)

STD STATION INVENTORY BY LOCATION (CONTINUED)

LINE	LOC'N DESIG	STA	DATE	LINE	LOC'N DESIG	STA	DATE	LINE	LOC'N DESIG	STA NO.	DATE	LINE	LOC'N DESIG	STA NO	DATE
IX	ъ	160	31 X	x	x	93	24 X	x	h	267	18 XI	PP		130	30 X
IX	c	161	31 X	x	f	94	25 X	x	1	268	19 XI	PP		131	30 I
IX	Ъ	162	31 X	x	у	95	25 X	x	j	269	19 XI	PP		132	30 X
IX	æ	163	31 X	x	e	96	25 X	x	k	270	19 XI	PP		133	30 X
ш	ъ	164	31 X	x	f	97	25 X	x	w	275	19 XI	PP		134	30 X
ц	c	165	31 X	x	fa	98	25 X	x	u	276	19 XI	PP		135	30 X
IX	d	166	1 XI	x	2	99	25 X	x	v	277	19 XI	PP		136	30 X
IX	c	167	1 XI	x	h	100	25 X	x	2	278	19 XI	PP		137	30 X
ш	Ъ	168	1 XI	x		101	25 X					PP ·		138	30 X
IX	a	169	1 XI	x	f	102	25 X	a*	a	179	3 XI	PP		139	30 I
IX	b	170	1 XI	x	fa	103	25 X	α	ъ	180	3 XI	PP		140	30 X
IX	c	171	1 XI	x	h	105	25 X	a	c	181	3 XI	PP		141	30 X
ц	d	172	1 XI	x	e	106	25 X	a	d	182	3 XI	PP		142	30 X
IX	c	173	1 XI	x	f	107	25 X					PP		143	30 X
IX	b	174	1 XI	x	fa	108	25 X	\$**	a	189	6 XI	PP		144	30 X
IX	δ	175	1 XI	x	2	1 09	25 X	8	ь	190	6 XI				
IX	đ	271	19 XI	x	h	. 110	25 X	8	c	191	6 XI				
ц	c	272	19 XI	x	e	111	25 X	ß	d	192	6 XI				
IX	Ъ	273	19 XI	x	fa	112	25 X	8	e	1 9 3	6 XI				
IX	a	274	1 9 XI	x	fa	113	25 X	8	c	194	7 XI				
				x	z	114	26 X	8	c	195	7 XI				
x	k	1	14 X	X	h	115	26 X	8	c	1 96	7 XI				
x	j	2	14 X	х	е	116	26 X	8	c	1 97	7 XI				
x	1	3	14 X	X	f	117	26 X	8	c	198	7 XI				
x	h	4	15 X	x	fa	118	26 X	8	c	1 99	7 XI				
x	g	5	15 X	x	Z	119	26 X	8	c	200	7 XI				
x	f	6	15 X	x	j	183	4 XI	8	c	201	8 XI				
x	8	56	22 X	x	1	184	4 XI	8	c	202	8 XI				
x	Ъ	57	22 X	x	j	185	5 XI								
x	c	58	22 X	x	1	186	5 XI	PP **	Ī	120	30 X				
x	đ	59	22 X	x	h	187	5 XI	PP		121	30 X				
x	9	60	22 X	x	j	188	6 XI	PP		122	30 X				
x	f	61	22 X	x	a	260	18 XI	PP		123	30 X				
x	g	62	22 X	x	ъ	261	18 XI	PP		124	30 X				
x	h	63	22 X	x	c	262	18 XI	PP		125	-30 X				
x	i	64	23 X	x	đ	263	18 XI	PP		126	30 X				
x	h	65	23 X	x	е	264	18 XI	PP		127	30 X				
x	j	66	23 X	x	f	265	18 XI	PP		128	30 X.				
x	k	67	23 X	x	g	266	18 XI	PP		12 9	30 X				

For Drogue set a near location II e.
 For Drogue set a near location X j.
 PP Pillar Pt. near 48° 18'N, 124° 04'W.

Depth scales and contour intervals were varied in the figures of the plates in order to accomodate the very considerable changes in gradients encountered in these coastal waters; the captions contain the pertinent information. Line X however is presented at a constant depth scale to avoid distortion at the Juan de Fuca Canvon depths. Several comments are offered on the adequacy of these figures. It is customary to consider the contoured data as though they are representative of a synotic look. In fact they are not. The strong horizontal and vertical gradients, (particularly near the mouth of the Columbia [spanned by Lines VI and VII] and the Straits of Juan de Fuca) coupled with the strong currents and severe storm conditions, to some measure vitiate the contour concept. This is particularly evident in the plan views as surface properties are especially subject to time changes. A further complication was the poor STD performance which has been discussed in section 2 of this report. Thus contour interval has been broadened in some areas to avoid the creation of ficticious detail. Despite the above qualifications the cross-sections provide a fairly detailed picture of the properties during a season when strong storm activity is rapidly effecting the fall transition. Truly adequate coverage will require a multiship effort with efficient STD systems.

In this data report it is inappropriate to include other than minimal analysis on the data presented. The common occurance of temperature inversions at depth, particularly in the lamina of 7 to 8 °C water is found in all sections in October, and the three sections presented for November (Lines I, VII, X). The salinity structure associated with

these inversions is competent to maintain a stable water column. A common characteristic of the water column as seen in almost all stations of the region, (excluding a few inshore stations on Line I), is a relatively broad range of salinities 32.75 to 33.75 $^{\text{O}}$ /oo associated with a very narrow range (± 0.25 °C) of temperatures centered at 7.5 °C.

Although barely a month separated the two occupations of Line VII and only 19 days the two series of STDs on Line I, the data reveal substantial cooling of the surface from October values. Heat losses were affected to at least 50 meters (compare figures a, g with h, i of Plate 3, respectively).

3.2.6 STD Time Series

RCSS 1 and RCSS 2 (fig. 1a, 1b) comprise a set of October-November (1971) stations at virtually the same locations. Inspection of table 2 will show other instances of reoccupied sites. The Line IX series (table 2, sta. 145 through 175) are an hourly sequence of 36 stations at four specified locations across the mouth of the Straits of Juan de Fuca. Figure 7 shows the space-time-tide relationship for these stations; the tide data is from the nearby Neah Bay station. For simplicity the spacial relationships are presented in terms of latitude. Longitudinal variations in station locations are relatively small and unimportant in this series. The Pillar Point stations (table 2, sta. 120 through 144) occupied at hourly intervals, varied about \pm 1 mile from the specified location. Inspection of this series shows that the variation in station locations has seriously weakened the significance of the time changes. Several time series were occupied on

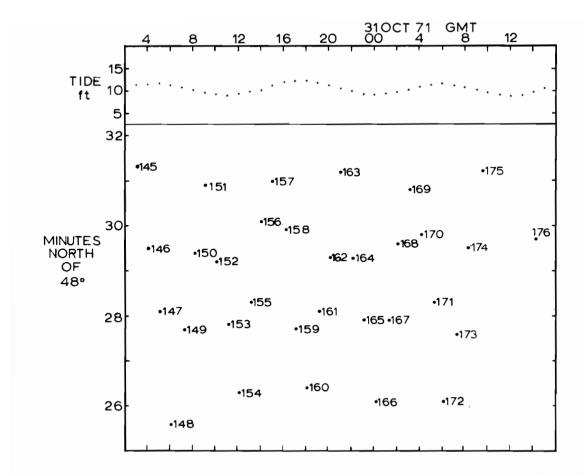


Figure 7. Diagram of STD Station Latitude (vicinity of site A) Time-Tide Relationships. STD stations serial 145 through 176 were occupied at 4 specified latitudes along line normal to axis of Strait of Juan de Fuca near site A. Diagram indicates actual latitude of each station (longitudinal variations were insignificant). The tide data is from nearby Neah Bay.

Line X. Stations 96 through 119 comprise a sequence of 23 observations at 5 locations in the Canyon near Site B_0 over a 29 hour period. Series BETA stations (NOS 189 - 202), were occupied at or near sites Xi and Xj during the BETA drogue series. These sites were also occupied as early as 14 October and as late as 19 November.

3.3 Thermistor Temperature Data from Site Bo

The thermistor based sensing system at Site B_0 operated successfully during the period from launch, 1654 October 15 to recovery 0001 15 November (GMT). Plate 5 illustrates the temperatures recorded at the three sensing levels (175, 195 and 235 m - see fig. 3). The temperature traces for the lower two levels appear to cross each other at several places indicating substantial temperature inversions in some cases (e.g. from 99 to 132 hours, traces for 195 and 235 meter temperatures). In fact the traces rarely cross; inspection of the digital data shows that only at times 317 and 678 hours did actual temperature inversions occur. These inversions were small, ranging up to about 0.05 °C, with durations of 35 and 65 minutes, respectively. The other apparent crossings are in reality only points of tangency, indicating brief periods of isothermal conditions at the two levels.

3.4 Tidal Data from Neah Bay Standard Tide Gage

Hourly tidal height data from the Neah Bay permanent tide gage for the period of the current meter observations are presented in Plate 5. The data were provided by the Tides Branch of NOAA's National Ocean Survey.

3.5 Meteorological Data

Wind data from the Umatilla light ship, recorded in Greenwich Mean Time, (see fig. 1 for location) are reproduced in table 3. The record-

32

ing interval is uneven but regular, being on a 4, 2, 6 hour cycle throughout the day. Wind data from the Cape Flattery light station are recorded at 3-hour intervals with direction recorded in "points" of the compass. As its location off the Straits may make winds less representative of the open ocean the data are not reproduced here. Meteorological data were recorded hourly on the ship OCEANOGRAPHER. Wind data at 3-hour intervals are reproduced in table 5. Figure 8 illustrates wind vectors recorded at Umatilla light ship and the OCEANOGRAPHER, during a period of storm activity 21, 22 October, when the ship was working on Lines IV and X, relatively close to the light ship. On October 21 the speeds at both stations were about the same; but the direction at the light ship was clearly more easterly than on the survey ship. The limited data available from the light ship suggests that as wind speeds diminished, the wind vectors at both stations became more equal.

3.6 Bathymetry near Site B

A limited bathymetric development of the immediate vicinity of Site B was conducted under HIFIX positioning control. The results, corrected for sound velocity but not for slope error, and contoured on a 20 fathom interval, are shown in figure 4. Even at this rather broad contour interval the Canyon floor has numerous irregularities. A heretofore unmapped area of the channel, with depths exceeding 100 fm, trending southwest, is noted in the left central portion of the contoured chartlet.

33

DA	TE	HOUR (GMT)											
19	771	03 05			11 15			17	,	23			
		DIR	s	DIR	s	DIR	s	DIR	s	DIR	s	DTR	s
	12	00	00	00	00	09	17	22	07	12	14	17	17
	_13	17	20	22	22	30	13	30	22	30	22	29	17.
	14	29	16	26	19	26	13	22	06	27	10	26	07_
	15	15	05	18	09	02	13	02	08	03	10	33	10
	16	32	07	03	05	05	10	05	10	05	10	33	10
о	17	35	10	08	05	18	07	16	08	16	08	16	08
с	18	17	04	15	04	21	08	28	05	16	12	11	18
т	19	11	20	14	26	18	31	23	.25	20	11	26	17
0	20	23	31	15	11	17	12	20	15	23	08	21	09
в	21	22	18	12	17	17	25	17	18	14	26	11	35
E	22	11	35	18	34			12	17	12	15	16	17
R	23	16	15	19	.17	15	08	15	09	11	03	25	07
	24	30	08	30	04	30	11	25	13	16	17	10	20
	25	16	22	18	32	17	22	19	26	18	30	20	22
	26	. 28	25	30	27	30	26	32	35	29	27	29	15
	27	30	26	35	26	32	14	02	16	01	16	03	12
	28	07	11	03	09	03	10	04	08	09	06	00	00
	29	00	00	00	00	13	04	15	14	13	15	13	25
	30	15	22	14	26	13	30	14	12	06	06	33	07
	31	35	08	06	04	07	07	15	13	11	23	15	31
	1	25	25	27	28	29	22	26	19	31	23	28	10
	2	27	17	26	08	24	09	20	15	14	17	15	20
	3	16	26	15	45	14	45	29	а,	28	07	28	13
	4	21	13	29	22	24	25	30	35	31	29	31	13
	5	32	05	21	05	.09	12	09	11	11	12	29	05
N	6	32	. 07	10	08	08	08	11	10	09	60	04	06
0	. 7	09	13	12	16	17	10	25	20	23	13	20	25
v	8	18	20	17	27	15	40	17	35	16	45	<u>' 17</u>	45
E	. 9	17	40	17	45	17	40	17	40	17	40	17	50
M	10	16	37	16	25	16	20	17	24	16	20	14	10
в	11	17	15	17	12	00	00	1 9	05	17	05	31	10
E	12	33	08	01	08	01	05	08	08	13	14	15	80
R	13	16	.14	07	16	17	15	07	15	10	20	18	11
	14	15	20	27	22	16	20	35	22	31	20	29	10
	15	00	00	19	10	14	18	06	05	06	06	00	00
	16	10	08	08	02	00	00	00	00	00	00	00	00
	17	31	03	00	00	18	10	06	06	10	08	35	03
	18	35	13	26	05	00	00	14	05	13	10	15	10
	19	12	20	12	20	16	25	16	22	17	20	17	20

Table 3. Umatilla Light Ship 48.1 N 124.8 W Wind Speed in Knots.

Table 4. NOS Ship OCEANOGRAPHER OSS-1 Wind Speed in Knots.

DA	TE	HOUR (LOCAL TIME)															
		01 04 07 10 13 16						1	9		22						
19	'n	DIR	s	DIR	s	DIR	s	DIR	s	DIR	s	DIR	5	DIR	s	DIR	s
	14	25	16	30	05	28	03	09	02	04	12	30	14	33	05	07	14
	15	08	14	03	14	03	14	4	07	04	06	33	07	01	06	35	05
	16	06	05	02	14	02	07	03	02	02	• 10	03	12	01	21	02	13
	17	02	12	00	06	00	05	33	04	22	03	20	12	12	11	20	09
o	18	34	20	33	07	32	04	16	05	22	15	18	25	18	32	20	38
c	19	25	30	24	22	27	14	30	22	27	24	28	16	25	16	22	10
Ŧ	20	24	17	26	19	26	16	29	12	24	12	20	06	18	12	17	16
0	21	18	22	17	23	14	14	16	28	17	36	16	40	18	38	25	18
в	22	25	10	19	06	15	10	16	14	17	16	17	15	18	14	17	12
B	23	14	10	13	08	09	11	29	08	32	05	29	10	30	12	33	03
R	24	21	06	23	05	20	07	16	12	18	14	16	18	18	18	19	24
	25			18	18	20	17	21	22	22	19	29	18	31	21	32	28
	26	29	28	29	24	25	18										
	27																
	28								ļ								
	29											08	12	06	12	08	16
	30	09	16	09	14	11	08	06	03	32	05	15	08	.10	06	14	-04
	31	10	12	13.	06	05	12	12	12	11	14	19	24	28	13	28	24
	_ 1	31	20	29	20	28	22	30	20	31	22	32	14	33	10	31	08
	2	30	06	24	07	20	10	20	15	18	18	19	18	19	31	19	27
	3	24	24	31	06	01	04	07	02	Calm	00	23	08	29	15	30	21
	4	31	22	32	24	32	23	32	19	34	09	31	12	34	11	Calm	00
	_ 5	15	10	12	04	12	08	11	07	22	07	20	09	11	14	09	13
	6	10	18	08	23	08	18	10	20	09	16	10	20	09	18	16	22
"	7	15	24	10	09	26	06	23	13	25	18						
۰	8									\vdash							
۲.	9								-								
E	10	-															
<u>*</u>										-							
В	12	Var.	04		~	11	12	14	16*	1 6	18	15	24	14	32	13	25
E	13	14	28	11	29	07	25	10	21	09 20	16	32	22	32	35	33	36 04
R	14	33	40	32	33	32	27	31	17	29 20	17	29	08	20	08	11	06 09
ł	15	13	21	31	08	27	09	27	06	30	12	31	08	31	06 08	34 01	09
ł	16	36	14	33	07	01	12	02	08	35	08	33	13 06	35 25	08	22	06
ŀ	17	<u>09</u>	04	02	06	Calma 16	00	15	04, 16	25	06	25	20	11	10	10	08
ŀ	18	20	04	20	05	16	12	15	16	<u>17</u>	16	15				10	
_	19	20	16	23	04	30	03	16	04	15	11	18	16	14	10		

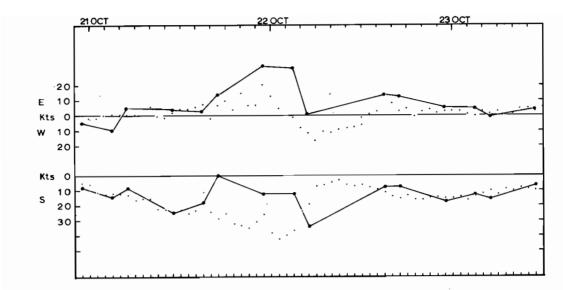


Figure 8. Wind Velocity Vectors Recorded at Umatilla Light Ship (connected data points) and Ship OCEANOGRAPHER (isolated data points) 21-23 October 1971. Ship OCEANOGRAPHER was within 110 km of the Lightship during this period.

As a result of a post-cruise check it has been established that this channel shoals immediately west of the contoured area. The location chartlet for figure 4, was constructed from a bathymetric chart by B. Carson of the University of Washington.

4. ACKNOWLEDGEMENTS

Deployment and retrieval of the moored instrument arrays is a relatively complex operation requiring precise handling of the ground tackle, deck machinery and ship. We wish to call special attention to the services of CDR J.P. Randall, who personally directed all aspects of this difficult work and whose efforts were 100% successful. Checks on the integrity of the parachute drogues, essential in establishing validity of drogue data, were performed by the rubber boat (ZODIAC) crews under sloppy sea conditions at considerable physical discomfort and risk. ENS K. Schnebele, R. Karlin and Chief Pharmacists Mate J. Scott were unhesitating in performing this difficult work. The Survey technicians on the ship were, to a man, diligent and careful in the most important aspect of the station work that of operating the instrumentation and faithfully recording the data. Their team effort was outstanding. Ensigns D. Black, R.H. Daly and J.H. WexTer assisted in the post-cruise analysis of the data, thereby greatly facilitating the preparation of this report. Finally, it is the Captain of the ship who sets the level of cooperation and effort. We are greatly indebted to CAPT Miller J. Tonkel who communicated his sincere interest in the success of our work to every man on the ship.

5. REFERENCES

- Cannon, G. A. (1972), Wind effects on currents observed in Juan de Fuca Canyon, J. Phys. Oceanog. <u>2</u>, 3.
- Ingraham, W. J. (1967), The geostrophic circulation and distribution of water properties off the coasts of Vancouver Island and Washington, Spring and Fall, 1963. Fisheries Bull. 66:2, 223-250.

McManus, D. A. (1964), Major bathymetric features near the coast of Oregon, Washington and Vancouver Island, Northwest Sci. <u>38</u>:3, 65-82. Physical chemical and biological data from the northeast Pacific Ocean,

Columbia River effluent area (various periods), University of Washington, Department of Oceanography Tech. Reports, Nos. 119, 134, 159, 180.

37

APPENDIX

A.1 Letter report from Chief Scientist to Drs. C. A. Barnes and J. D. Smith of the University of Washington dated December 14, 1971

RF28-20g-571

Report on POL/UW cooperative field work - Washington coast Fall 1971

Drs. C.A. Barnes and J.D. Smith

Project Instructions for RP-6-0C-71

Current meters and associated instrumentation owned by the University of Washington and POL were deployed during the NOAA POL Research Cruise RP-6-0C-71 (currents in Juan de Fuca Canyon and adjacent waters) to support both the University's and the Pacific Oceanographic Laboratories' research projects. The interests of the two cooperating organizations are complementary in that together the results provide an integrated body of data on the currents off the Washington coast. The general plan for the work is outlined in the attached project instructions dated 10 September 1971.

Six current measuring systems and a marker buoy were deployed and recovered (less marker buoy) essentially in conformance with the project instructions.

Details concerning the two instrument systems deployed for the UW are as follows:

Site Designator: "C"

Site Information: 46°26'N, 124°20'W, water depth 77 m, (near USCG temporary buoy "University of Washington oceanographic lighted Buoy "N").

Deployment:	Installed	16	October 1971	2055Z
	Recovered	15	November 1971	1845Z

Instrumentation:

Туре	Serial No.	Height above bottom (m)	Remarks
Braincon CM	B-129	62	Rotor off bearing when recovered.
Braincon CM	B-128	57	Vane missing (broken off) when recovered.

Braincon CM	B-155	47	Vane missing (broken off) when recovered.
Aanderaa	A-352	28	Tinned copper seizing wire badly eroded.
Aanderaa	A –	11	Same as A-352
Aanderaa	A-348	6	Same as A-352 Swivel rod bent, rotor missing
Acoustic release	ORE-191-3	3	Normal functioning

The 0.2 -m length wire rope connecting A-348 to the ORE-191-3 was severly eroded, only the central strand remaining (see photo #1). This sample was retained and delivered to the Columbia River Effluent Study group at UW.

Comments on site "C" system: Pending processing of the data records, which will establish when the meters were damaged, one can only speculate on the causes of the relatively severe failures of the instruments. The broken fiberglass vanes on Braincon meters B-128, B-155 appeared to be fresh breaks and it is surmised (and hoped) that the breaks occurred upon retrieving the instruments. The Aanderaa meter, A-348, showed oxide discoloration on the bent members, implying the damage was done at installation. As the photo #2 illustrates, the meter was rotated 180° on its vertical axis. It is suspected that this occurred on the free fall to bottom, as a result of 'overshooting' of the falling array. Upon 'overshootin the wire rope would slacken, and attempt to re-lay (having unlayed while in tension). The torque developed in a slack bight could result in winding of the bight and thus fouling of the meter which was momentarily suspended in the slack wire rope. It is speculated that the snagging and resultant damage to the Braincon meters, B-129, B-138, B-155, occurred when a slack bight developed in the wire rope after the array was released from the anchor and the meters were hanging in garlands from the three buoys, now on the surface. Assuming that these slack garlands 'wound up' as a result of torque or set curvature in the wire rope, it seems likely that the vanes were broken during the winching of the system aboard ship.

The above speculation is offered as a probable cause for the regretted damage. Although identical handling was employed on the UW and POL systems, no damage was sustained on the POL systems. The difference I attribute to our use of torgue balanced wire rope. As the manufacturer asserts (see figure 1) the rope does not twist; as it was brought aboard with the capstan and fell free to the deck, it layed twist free. Conversely, I noted that the UW cable had a definite tendency to 'twist' up presumably as a result of a strain induced torque.

Site Designator:	"E"		
Site Information:		50'W, water depth 167 wer than anticipated)	m (site found to
Deployment:	Installed 16 (Recovered 15)		
Instrumentation:			
Туре	Serial No.	Height above bottom (m)	Remarks
Braincon	B-117	151	Vane broken off
Braincon	B-132	146	Vane broken off
Braincon	B-156	114	Normal
Aanderaa	A-353	55	Seizing wire eroded
Aanderaa	A-349	10	Same as A-351
Aanderaa	A-351	4	Same as A-351
Acoustic Release	ORE-130-1	1	Normal Functioning

Comments: 11 meters were removed from wire rope separating B-132 and B-156 to compensate for shoaler sounding. It is believed that the damage to B-117 and B-132 was caused by the same cable torgue problem noted at the site "C" installation. The lessened damage at site "E" relative to "C" is probably due to the shorter lengths of cable and proportionately less chance for 'winding up' of the slack cable. Other observations of possible interest are the electrolytic erosion of the seizing wire, the rather uniformly rusty appearance of the wire rope, and the <u>lack</u> of erosion of the galvanizing on the shackles, rings, etc. Conversely, the POL systems showed apparent total removal of the galvanizing from the shackles and rings, etc., but little if any erosion of the torgue balanced wire rope.

Bottom drifters

Packets of plastic bottom drifters were identified by Serial No. and released at locations as specified by the UW during the first phase of the cruise. Release information is listed in Table A1.

All instrumentation used on both UW and POL projects has been returned to the University. We are very grateful for the use of the instruments and the splendid pre-use servicing of instruments and support extended by the UW personnel. POL will furnish the University with paper or magnetic tape data translations from the Aanderaa meters used at the UW sites. UW was represented during 13-26 October at sea by Dr. Glenn Cannon of POL who also is an Affiliate Assistant Professor in the Department of Oceanography.

T.V. Ryan Chief Scientist, RP-6-0C-71

Enclosure

Packet No.	Drifter Nos.		Releas	e Loca	ation	Date (Z1971)
20	20601-20625	45°	48.9'	124°	41.0'	17 Oct
19	20626-20650	45°	48.6'	124°	35.5'	17 Oct
13	20651-20675	46°	40.6'	124°	41.5'	18 Oct
14	20676-20700	46°	40.0'	124°	48.5'	18 Oct
12	20701-20725	47°	08.1'	1 24 °	59.1'	20 Oct
11	20726-20750	47°	08.2'	124°	53.9'	20 Oct
9	20751-20776	47°	41.0'	124°	59.5'	21 Oct
10	20776-20800	47°	38.4'	125°	06.4'	21 Oct
8	20801-20825	48°	01.9'	125°	20.5'	22 Oct
7	20826-20850	48°	03.5'	125°	19.3'	22 Oct
6	20851-20875	48°	04.8'	125°	19.0'	22 Oct
16	20876-20900	48°	08.8'	125°	10.5'	22 Oct
15	20901-20925	48°	06.3'	125°	04.1'	22 Oct
3	20926-20950	48°	30.7'	125°	44.1'	23 Oct
4	20951-20975	48°	26.4'	125°	53.0'	23 Oct
5	20976-21000	48°	23.0'	126°	03.0'	23 Oct
2	21001-21025	48°	48.9'	126°	31.0'	24 Oct
1	21026-21050	48°	54.3'	126°	18.7'	24 Oct
18	21051-21075	48°	09.0'	125°	22.2'	25 Oct
17	21076-21100	48°	01.2'	125°	13.7'	25 Oct

Table A1. Bottom Drifter Release Information